Graphic representing Fairness, Accountability, and Transparency in Machine Learning community compilation

Fairness, Accountability, and Transparency in Machine Learning community compilation


https://docs.google.com/spreadsheets/d/1nacNWHfq1B6SrOC_Dyd-R908qsANeTACG6FibLl9Jls/edit

The past few years have seen growing recognition that machine learning raises novel challenges for ensuring non-discrimination, due process, and understandability in decision-making. In particular, policymakers, regulators, and advocates have expressed fears about the potentially discriminatory impact of machine learning, with many calling for further technical research into the dangers of inadvertently encoding bias into automated decisions.

At the same time, there is increasing alarm that the complexity of machine learning may reduce the justification for consequential decisions to "the algorithm made me do it."

This spreadsheet lists many of the people, organizations, events and resources comprising the FATML — Fairness, Accountability, and Transparency in Machine Learning — community.

Status: Active
Founded: 2017
Last Modified: 11/24/2024
Added on: 6/22/2021

Project Categories

Back to Top